ENDOMORPHISMS OF RELATIVELY HYPERBOLIC GROUPS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endomorphisms of Relatively Hyperbolic Groups

We generalize some results of Paulin and Rips-Sela on endomorphisms of hyperbolic groups to relatively hyperbolic groups, and in particular prove the following. • If G is a non-elementary relatively hyperbolic group with slender parabolic subgroups, and either G is not co-Hopfian or Out(G) is infinite, then G splits over a slender group. • If H is a non-parabolic subgroup of a relatively hyperb...

متن کامل

Relatively hyperbolic Groups

In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a boun...

متن کامل

Growth of relatively hyperbolic groups

We show that a relatively hyperbolic group either is virtually cyclic or has uniform exponential growth. Mathematics Subject Classification(2000). 20F65.

متن کامل

Limit Groups for Relatively Hyperbolic

We begin the investigation of Γ-limit groups, where Γ is a torsion-free group which is hyperbolic relative to a collection of free abelian subgroups. Using the results of [16], we adapt the results from [21] and [22] to this context. Specifically, given a finitely generated group G, and a sequence of pairwise non-conjugate homomorphisms {hn : G → Γ}, we extract anR-tree with a nontrivial isomet...

متن کامل

On Endomorphisms of torsion-Free hyperbolic Groups

Let H be a torsion-free δ-hyperbolic group with respect to a finite generating set S. Let g1, . . . , gn and g1∗, . . . , gn∗ be elements of H such that gr∗ is conjugate to gr for each r = 1, . . . , n. There is a uniform conjugator if and only if W (g1∗, . . . , gn∗) is conjugate to W (g1, . . . , gn) for every word W in n variables and length up to a computable constant depending only on δ, ♯...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Algebra and Computation

سال: 2008

ISSN: 0218-1967,1793-6500

DOI: 10.1142/s0218196708004305